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Introduction and Motivation

To serve the ever-increasing demand for computing resources, many HPC systems are
equipped with multiple highly parallel general-purpose GPUs. In most cases, the GPUs
are integrated as discrete server-type GPUs that are attached to the nodes as coprocessors
and provide the lion’s share of the theoretical compute performance. This concept allows
to significantly increase the theoretical compute power, however, it poses a challenge to
the scientific software developers that need to redesign their software such that it can
benefit from the additional resources. An attractive strategy is to use the GPUs for the
computationally most expensive part of an application. For computational fluid dynamics
(CFD) simulations, a substantial part of the overall effort is spent on the solution of the
system of linear equations arising from the discretized transport equations. This paper
investigates how the currently ongoing effort within the open-source linear algebra library
Ginkgo towards distributed GPU computing can be used as a backend for OpenFOAM
to improve the simulation performance by offloading the linear algebra computations to
GPUs.

Related Work

In the past several projects, e.g. PETSc4FOAM1, RapidCFD2, PARALUTION3, foamEx-
tend 4 addressed the need to offload OpenFOAMs linear algebra computations to GPUs.
However, several of the mentioned projects did not receive significant updates in the last
few years. Thus, this work focuses on using the free and open-source library Ginkgo which
is under active development and supports NVIDIA GPUs, AMD GPUs, and Intel GPUs
Anzt et al. (2020).

1https://develop.openfoam.com/modules/external-solver
2https://github.com/Atizar/RapidCFD-dev
3https://www.paralution.com
4https://sourceforge.net/projects/foam-extend/
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Ginkgo

Ginkgo is a math library for linear algebra written in modern C++. Its main focus lies on
sparse linear algebra for GPU architectures by implementing hardware-specific kernels in
their native languages, i.e. CUDA (for NVIDIA GPUs), HIP (for AMD GPUs), OpenMP
(for general-purpose multicore processors, such as those from Intel, AMD, or Arm), and
DPC++ (for Intel GPUs). It supports a variety of high-performance linear algebra solvers,
e.g. CG, BiCGStab, GMRES, and AMGx, and preconditioners like IC, ILU, ISAI, and
(Block)-Jacobi, which are suitable for CFD simulations.

Backend Methodology

To leverage Ginkgo functionality in OpenFOAM, the OpenFOAM-Ginkgo-Layer (OGL)
was implemented as a plugin for OpenFOAM. The main steps within OGL are as follows.

At first, the OpenFOAM system matrix is converted from the LDU format to a sparse
matrix in CSR format in row-major order. This step yields a permutation matrix and
a sparsity pattern.The permutation matrix is used to perform efficient reordering of the
matrix values on the GPU device, whereas the sparsity pattern holds the indices of the
sparse matrix. Both can be reused for subsequent time-step updates and are stored via
smart-pointers within the object registry as DevicePersistent data structures to avoid costly
recomputation. Furthermore, the right-hand side and the solution vector are copied to the
device. While the solution vector is communicated back to OpenFOAM after the solution
process for one transport equation is completed, it is also re-used as the initial guess for
the next time step. Evaluation of the stopping criterion has been offloaded to the GPU
device as well to avoid costly communication during the iterative solver loop.

Performance Evaluation

For a performance evaluation of the OGL interfacing the Ginkgo functionality, we choose
the lidDrivenCavity3D5 example, that was previously used by Bnaa et al. (2020) for bench-
marking purposes. The presented test case uses the original, uniform, cubic grid of Bnaa
et al. (2020) and evaluates results for various grid resolutions ranging from 1003 to 5003

while keeping the CFL number constant.
In the experimental evaluation, we use two hardware systems: For the MPI-parallel

OpenFOAM execution, without GPU acceleration, and the OGL execution using Ginkgo’s
HIP backend, we run on a private machine composed of two AMD EPYC 7302 16 Core CPU
and eight AMDMI100 GPUs. Additionally, for the OpenFOAM runs using Ginkgo’s CUDA
backend, we run on the HoreKa6 cluster, which nodes are equipped with two Intel Xeon
Platinum 8368 CPUs and four NVIDIA A100-40 GPUs. The MPI-parallel OpenFOAM
runs without GPU acceleration employ as many MPI ranks as physical cores are available
on the respective machines, i.e. 32 on the private AMD machine and 76 on the HoreKa
cluster. For the OpenFOAM runs using either Ginkgo’s CUDA backend or Ginkgo’s HIP
backend, the case is decomposed into as many subdomains as GPUs are used. The simple

5https://develop.openfoam.com/committees/hpc.git
6https://www.scc.kit.edu/dienste/horeka.php
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Table 1: Number of subdivisions in each direction for the corresponding domain decom-
positons

Total number of subdomains 2 3 4 6 8 32 76

Divisions in x-dimension 2 3 2 3 2 4 19
Divisions in y-dimension 1 1 2 2 2 4 2
Divisions in z-dimension 1 1 1 2 2 2 2

(a) HIP (b) CUDA

Figure 1: Speed-up of the linear solve of pressure equation on the HoreKa system over
different grid resolutions and different numbers of GPUs employed. Solid lines indicate
results using GPU-direct and dashed lines transferring via host memory.

scheme was taken as a decomposition method, with the in Tab. 1 displayed number of
subdomains in the respective dimensions.

Figure 1 shows the speed-up of the linear solver in comparison to the non-accelerated
runs over different grid resolutions and for different numbers of GPUs. Benchmark runs
with the HIP backend, shown in Fig 1(a) are conducted up to a problem size of 3003. The
speed-up increases monotonically with the problem size from approximately 0.5 for the 1003

up to a factor of ten for the largest case on eight GPUs. Benchmark runs with the CUDA
backend, shown in Fig 1(a) are conducted up to a problem size of 5003. Additionally, on the
CUDA machines, benchmark runs with (solid lines) and without (dashed lines)NVIDIAs
GPUDirect are performed. Here again, a monotonically increasing speedup up to a fac-
tor of approximately eight for the GPUDirect version can be observed. Generally, using
GPUDirect technology increases the performance by another 10-20%, since it avoids costly
communication to the host by transferring data between GPUs directly.

Future Work

We have demonstrated that by using the OpenFOAM Ginkgo Layer (OGL) to interface
Ginkgo’s high-performance linear algebra, we can accelerate OpenFOAM applications on
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multiple NVIDIA GPUs and AMDGPUs. For the lidDrivenCavity3D example, we reported
speed-up factors of up to 8× over the non-accelerated execution using 76 and 32 MPI ranks,
respectively. Thus, OGL allows users to speed up their single-node simulations. Future
work will extend the scaling of OGL across multiple nodes.
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